रविवार, 2 जून 2013



  •     
    त्वरक संचालित परमाणु ऊर्जा
        
    चतुर्थ पीढ़ी परमाणु रिएक्टर्स
        
    भारतथोरियम(अगस्त 2012 अद्यतन)

        
    थोरियम यूरेनियम की तुलना में प्रकृति में प्रचुर मात्रा में है.
        
    बल्कि यह विखंडनीय से उपजाऊ है, और परमाणु ईंधन के रूप में विखंडनीय सामग्री के साथ संयोजन के रूप में इस्तेमाल किया जा सकता है.
        
    थोरियम ईंधन यूरेनियम -233 विखंडनीय नस्ल कर सकते हैं.एक नए प्राथमिक ऊर्जा स्रोत के रूप में थोरियम के इस्तेमाल के कई वर्षों के लिए एक tantalizing संभावना किया गया है. एक लागत प्रभावी ढंग से अपने अव्यक्त ऊर्जा मूल्य निकाल रहे एक चुनौती बनी हुई है, और काफी अनुसंधान और विकास के निवेश की आवश्यकता होगी.प्रकृति और थोरियम के स्रोतोंथोरियम थोर, गरज के नॉर्स देवता के नाम पर जो स्वीडिश रसायनज्ञ जॉंस जेकब Berzelius, द्वारा 1828 में खोज की एक स्वाभाविक रूप से होने वाली, थोड़ा रेडियोधर्मी धातु है. यह यूरेनियम की तुलना में लगभग तीन गुना अधिक प्रचुर मात्रा में है, जहां सबसे चट्टानों और मिट्टी में थोड़ी मात्रा में पाया जाता है. मिट्टी सामान्यतः थोरियम के प्रति मिलियन लगभग 6 भागों (पीपीएम) के एक औसत होता है.थोरियम एक भी समस्थानिक रूप में प्रकृति में मौजूद है - गु 232 - बहुत धीरे धीरे (अपने आधे जीवन में तीन बार पृथ्वी की उम्र के बारे में है) decays जो. natural थोरियम और यूरेनियम का क्षय जंजीरों गु-228, गु-230 और गु-234 के मिनट के निशान को जन्म दे, लेकिन जन मामले में इन की उपस्थिति नगण्य है.जब शुद्ध, थोरियम कई महीनों के लिए अपनी चमक बरकरार रखती है कि एक चांदी सफेद धातु है. हालांकि, यह ऑक्साइड के साथ दूषित है जब, ग्रे और अंततः काला होता जा रहा हवा में थोरियम धीरे tarnishes,. थोरियम ऑक्साइड (ThO2), भी thoria कहा जाता है, सभी आक्साइड की सर्वोच्च पिघलने अंक (3300 डिग्री सेल्सियस) में से एक है. हवा में जब गरम, थोरियम धातु turnings आग लगना और एक सफेद रोशनी के साथ शानदार ढंग से जला. क्योंकि इन गुणों से, थोरियम प्रकाश बल्ब तत्वों, लालटेन आवरण, चाप प्रकाश लैंप, वेल्डिंग इलेक्ट्रोड और गर्मी प्रतिरोधी मिट्टी के बरतन में आवेदन मिल गया है. थोरियम ऑक्साइड युक्त ग्लास एक उच्च अपवर्तक सूचकांक और फैलाव है और कैमरों और वैज्ञानिक उपकरणों के लिए उच्च गुणवत्ता के लेंस में प्रयोग किया जाता है.थोरियम का सबसे सामान्य स्रोत दुर्लभ पृथ्वी फॉस्फेट के बारे में 12% थोरियम फॉस्फेट तक शामिल हैं जो खनिज, monazite, लेकिन औसत पर 6-7% है. Monazite आग्नेय और अन्य चट्टानों में पाए लेकिन सबसे अमीर सांद्रता लहर और अन्य भारी खनिजों के साथ मौजूदा कार्रवाई से ध्यान केंद्रित किया, placer जमा में कर रहे है. विश्व monazite संसाधनों भारत के दक्षिण और पूर्वी तटों पर भारी खनिज रेत जमा में हैं दो तिहाई जिनमें से 12 लाख टन, होने का अनुमान है. कई अन्य देशों में पर्याप्त जमा (नीचे तालिका देखें) कर रहे हैं. Monazite से थोरियम वसूली आमतौर पर 140 से कम सोडियम हाइड्रोक्साइड साथ लीचिंग शामिल ° शुद्ध ThO2 वेग के लिए एक जटिल प्रक्रिया द्वारा पीछा सी.थैराइट (ThSiO4) एक आम खनिज है. थोरियम और दुर्लभ पृथ्वी धातुओं की एक बड़ी शिरा जमा इडाहो में है.2007 आईएईए-एनईए प्रकाशन यूरेनियम 2007: संसाधन, उत्पादन और मांग (अक्सर 'लाल किताब' कहा जाता है) कुल जाना जाता है और अनुमान संसाधनों का 4.4 मिलियन टन का आंकड़ा देता है, लेकिन यह दुनिया के बहुत से डेटा शामिल नहीं है. $ 80/kg गु या उससे कम की लागत से वसूली यथोचित आश्वासन दिया और अनुमानित संसाधनों के लिए डेटा नीचे तालिका में दिया जाता है. आंकड़े से कुछ मान्यताओं और खनिज रेत के लिए सरोगेट डेटा, नहीं सबसे खनिज संसाधनों के रूप में एक ही रास्ते में प्रत्यक्ष भूवैज्ञानिक आंकड़ों पर आधारित हैं.अनुमानित दुनिया थोरियम संसाधनों 1थोरियम संसाधनों और पहचान गु संसाधनों के लिए कोई अंतरराष्ट्रीय या मानक वर्गीकरण पहचान यू संसाधन के रूप में वर्गीकरण के मामले में एक ही अर्थ नहीं है नहीं है. थोरियम एक प्राथमिक अन्वेषण लक्ष्य नहीं है और संसाधनों यूरेनियम और दुर्लभ पृथ्वी के संसाधनों के संबंध में अनुमान है.कुल का देश टन%भारत 846,000 16तुर्की 744,000 14ब्राजील 606,000 11ऑस्ट्रेलिया 521,000 10अमरीका 434000 8मिस्र 380,000 7नॉर्वे 320,000 6वेनेजुएला 300,000 6कनाडा 172,000 3रूस 155000 3दक्षिण अफ्रीका 148,000 3चीन 100,000 2ग्रीनलैंड 86,000 2फिनलैंड 60000 1स्वीडन 50,000 1कजाखस्तान 50,000 1अन्य देशों 413000 8विश्व के कुल 5385000

     
    ओईसीडी एनईए और अंतर्राष्ट्रीय परमाणु ऊर्जा एजेंसी, यूरेनियम 2011: संसाधन, उत्पादन और डिमांड ("लाल किताब"), किसी भी सीमा के निचले आंकड़ों का प्रयोग और 'अज्ञात' सीआईएस अनुमान को छोड़ते हुए.एक परमाणु ईंधन के रूप में थोरियमथोरियम (गु 232) विखंडनीय ही नहीं है और इसलिए एक थर्मल न्यूट्रॉन रिएक्टर में सीधे प्रयोग करने योग्य नहीं है - इस संबंध में यह यूरेनियम -238 के समान है. हालांकि, यह 'उपजाऊ' है और एक न्यूट्रॉन को अवशोषित पर (यू -233) यूरेनियम -233 को परिणत जाएगा, जो एक उत्कृष्ट विखंडनीय ईंधन सामग्री ख है. थोरियम ईंधन अवधारणाओं इसलिए गु -232 पहली आवश्यक न्यूट्रॉन खुराक प्रदान करने के लिए एक रिएक्टर में विकिरणित है कि आवश्यकता होती है. उत्पादन किया है कि यू -233 या तो रासायनिक जनक थोरियम ईंधन से अलग और नए ईंधन में साफ किया, या यू -233 में ही ईंधन के रूप में 'में सीटू' उपयोगी हो सकता है किया जा सकता है.थोरियम ईंधन इसलिए एक चेन रिएक्शन (और इस प्रकार अधिशेष न्यूट्रॉन की आपूर्ति) बनाए रखा जा सकता है ताकि एक 'ड्राइवर' के रूप में एक विखंडनीय सामग्री की जरूरत है. केवल विखंडनीय ड्राइवर विकल्प यू -233, यू -235 या पु-239 (आपूर्ति करने के लिए आसान है, जिनमें से कोई नहीं) कर रहे हैं.लेकिन काफी मुश्किल - - यह संभव है कि वे उपभोग विखंडनीय सामग्री से थर्मल रिएक्टरों में अधिक यू -233 का उत्पादन है कि थोरियम ईंधन डिजाइन करने के लिए (यह अधिक से अधिक 1.0 की एक विखंडनीय रूपांतरण अनुपात होने के और भी प्रजनन कहा जाता है के रूप में जाना जाता है). थोरियम के साथ थर्मल प्रजनन विखंडनीय चालक के रूप में यू -233 का उपयोग कर, और रिएक्टर में इस न्यूट्रॉन अर्थव्यवस्था को प्राप्त करने के लिए (भागने या परजीवी अवशोषण के माध्यम से यानी, कम न्यूट्रॉन हानि) बहुत अच्छा हो गया है केवल वास्तव में संभव है. धीमी गति से न्यूट्रॉन सिस्टम में विखंडनीय सामग्री के प्रजनन के लिए संभावना थोरियम आधारित ईंधन के लिए एक अनूठी विशेषता है और यूरेनियम ईंधन के साथ संभव नहीं है.थोरियम का उपयोग करने के लिए एक अलग विकल्प प्लूटोनियम (और रेडियोऐक्टिव तत्व की तरह भी अन्य transuranic तत्व) युक्त ईंधन के लिए एक 'उपजाऊ मैट्रिक्स' के रूप में है. कोई नए प्लूटोनियम यूरेनियम ईंधन के विपरीत, थोरियम घटक से निर्मित है, और इसलिए इस धातु का शुद्ध खपत के स्तर पर नहीं बल्कि उच्च है.ताजा थोरियम ईंधन में विखंडन के सभी (इस प्रकार शक्ति और न्यूट्रॉन) ड्राइवर घटक से निकाले जाते हैं. ईंधन धीरे - धीरे बढ़ता यू -233 सामग्री चल रही है और यह ईंधन की बिजली उत्पादन के लिए अधिक से अधिक योगदान देता है. यू -233 से परम ऊर्जा उत्पादन (और इसलिए परोक्ष रूप से थोरियम) सहित कई ईंधन डिजाइन मानकों पर निर्भर करता है: ईंधन है प्राप्त किया ईंधन व्यवस्था, न्यूट्रॉन ऊर्जा स्पेक्ट्रम और न्यूट्रॉन प्रवाह (मध्यवर्ती उत्पाद प्रोटैक्टीनियम -233, को प्रभावित करने अप जला जो एक न्यूट्रॉन अवशोषक). यू -235 के रूप में है कि ऊर्जा (200 एमईवी) का एक ही राशि के बारे में एक U-233 नाभिक विज्ञप्ति के विखंडन.थोरियम ईंधन के डिजाइन में एक महत्वपूर्ण सिद्धांत शारीरिक रूप से उपजाऊ (कम या शून्य शक्ति) ईंधन की थोरियम भाग से अलग है एक उच्च विखंडनीय (और इसलिए उच्च शक्ति) ईंधन क्षेत्र बीज क्षेत्र कहा जाता है, जिसमें विषम ईंधन की व्यवस्था की है - कंबल बुलाया. इस तरह की एक व्यवस्था है कि वे वास्तव में सभी थर्मल प्रजनन ईंधन डिजाइन विषम हैं, यू -233 विखंडनीय को परिवर्तित कर सकते हैं ताकि थोरियम नाभिक को अधिशेष न्यूट्रॉन की आपूर्ति के लिए बहुत ही अच्छा है. इस सिद्धांत सभी थोरियम-सक्षम रिएक्टर सिस्टम के लिए लागू होता है.थोरियम का उपयोग करने में सक्षम रिएक्टर्सथोरियम एक परमाणु ईंधन के रूप में पेश किया जा सकता है जिसमें रिएक्टर के सात प्रकार के होते हैं. इनमें से पहले पांच सब कुछ बिंदु पर परिचालन सेवा में प्रवेश किया है. पिछले दो अभी भी वैचारिक हैं:हैवी वाटर रिएक्टर्स (PHWRs): ये बहुत अच्छी तरह से उनके संयोजन के कारण थोरियम ईंधन के लिए उपयुक्त हैं: (i) के उत्कृष्ट न्यूट्रॉन अर्थव्यवस्था (उनके कम परजीवी न्यूट्रॉन अवशोषण अधिक न्यूट्रॉन उपयोगी यू -233 का उत्पादन करने के लिए थोरियम द्वारा अवशोषित किया जा सकता है), ( यू -233 में परिवर्तित करने के पक्ष में है जो दो) थोड़ा तेजी औसत न्यूट्रॉन ऊर्जा, (तीन) लचीला ऑन लाइन ईंधन भरने की क्षमता है. इसके अलावा, भारी पानी रिएक्टरों (विशेष रूप से Candu) अच्छी तरह से स्थापित कर रहे हैं और व्यापक लाइसेंस अनुभव है जो वहाँ के लिए वाणिज्यिक प्रौद्योगिकी व्यापक रूप से तैनात किए गए.थोरियम ईंधन AECL की चाक नदी प्रयोगशालाओं में NRX और NRU रिएक्टरों में पिछले 50 साल से अधिक का परीक्षण किया गया है, नीचे दिए गए अनुसंधान एवं विकास खंड देखें. CANDU रिएक्टरों व्यापक संशोधन के बिना यूरेनियम और थोरियम आधारित ईंधनों के बीच स्विच करने के लिए बहुत अधिक लचीलापन है.बढ़ी Candu 6 और 5% प्लूटोनियम (रिएक्टर ग्रेड) प्लस थोरियम के साथ ईंधन ए सी आर -1000 रिएक्टरों के लिए संभावित आवेदन कर रहे है. बंद ईंधन चक्र में बंद शुरू करने के लिए आवश्यक चालक ईंधन उत्तरोत्तर संतुलन ऊर्जा का 80% तक पहुँचने पर थोरियम से आता है, इसलिए है कि यू -233 पुनर्नवीनीकरण साथ बदल दिया है. विखंडनीय ड्राइव ईंधन लियू, प्लूटोनियम, या LWR से पुनर्नवीनीकरण यूरेनियम हो सकता है. लगभग आत्मनिर्भर संतुलन थोरियम ईंधन चक्र के साथ PHWRs के बेड़े प्लूटोनियम प्रदान करने के लिए कुछ फास्ट ब्रीडर रिएक्टरों के द्वारा समर्थित किया जा सकता है.उच्च तापमान गैस कूल्ड रिएक्टर (HTRs): ये अच्छी तरह विखंडन बनाए रखने के लिए जो pyrolytic कार्बन और सिलिकॉन कार्बाइड परतों के साथ लेपित प्लूटोनियम या संवर्धित यूरेनियम के साथ मिश्रित थोरियम का मजबूत 'TRISO' लेपित कणों के रूप में थोरियम आधारित ईंधन के लिए उपयुक्त हैं गैसों. ईंधन कण उच्च तापमान पर बहुत स्थिर है कि एक ग्रेफाइट मैट्रिक्स में एम्बेडेड रहे हैं. इस तरह के ईंधन बहुत लंबी अवधि के लिए विकिरणित और इस प्रकार गहराई से उनके मूल विखंडनीय प्रभारी का फायदा उठाने के लिए जला कर किया जा सकता है. थोरियम ईंधन दोनों 'कंकड़ बिस्तर' और 'प्रिज्मीय' HTR के ईंधन की किस्मों के लिए तैयार किया जा सकता है.उबलते (लाइट) वाटर रिएक्टर्स (BWRs): BWR ईंधन असेंबलियों ऐसे अतिरिक्त संयम और / या कमर का ईंधन छड़ के रूप में संरचना और संरचना के विकल्प के लिए अनुमति देते हैं. इस डिजाइन लचीलापन है कि अच्छी तरह से अनुकूलित थोरियम ईंधन BWRs के लिए बनाया जा सकता है, उदाहरण के लिए, थोरियम प्लूटोनियम 'जल' प्लूटोनियम के लिए सिलवाया रहे हैं कि ईंधन. BWRs एक अच्छी तरह से समझा और लाइसेंस प्राप्त रिएक्टर डिजाइन कर रहे हैं.प्रेशराइज्ड (लाइट) वाटर रिएक्टर्स (PWRs): व्यवहार्य थोरियम ईंधन BWRs के लिए कम से कम लचीलेपन के साथ हालांकि, एक PWR के लिए तैयार किया जा सकता है. ईंधन संतोषजनक ईंधन जला हुआ हासिल करने के क्रम में विषम व्यवस्था में होने की जरूरत है. यह यू -233 के महत्वपूर्ण मात्रा में परिवर्तित कि थोरियम आधारित PWR ईंधन डिजाइन करने के लिए संभव नहीं है. PWRs थोरियम का उपयोग करने में जो सही रिएक्टर नहीं कर रहे हैं, भले ही वे उद्योग workhorse कर रहे हैं और PWR लाइसेंस के अनुभव का एक बहुत कुछ है. वे एक व्यवहार्य प्रारंभिक प्रवेश थोरियम मंच हैं.फास्ट न्यूट्रॉन रिएक्टर्स (FNRs): थोरियम एक तेजी से न्यूट्रॉन स्पेक्ट्रम के साथ ऑपरेटिंग रिएक्टरों के लिए ईंधन के घटक के रूप में काम कर सकते हैं - भारी nuclides का एक व्यापक रेंज fissionable हैं और संभवतः एक थोरियम ईंधन ड्राइव कर सकते हैं जिसमें. बजाय इस में अवशिष्ट यू -235 से अंडर 238 के लिए एक उच्च तेजी से विखंडन दर और विखंडन योगदान के कारण इन रिएक्टर सिस्टम में एक उपजाऊ ईंधन मैट्रिक्स के रूप में समाप्त यूरेनियम (डीयू) के थोरियम का उपयोग करने में कोई रिश्तेदार लाभ, तथापि, वहाँ है सामग्री. इसके अलावा, अधिक FNRs व्यावसायिक रूप से उपलब्ध हैं जब उपयोग के लिए उपलब्ध अधिशेष डीयू की एक बड़ी राशि है, इसलिए थोरियम इन पद्धतियों में कम या कोई प्रतिस्पर्धा में बढ़त है.पिघला हुआ नमक रिएक्टर्स (MSRs): इन रिएक्टरों के डिजाइन के स्तर पर अभी भी कर रहे हैं, लेकिन बहुत अच्छी तरह से ईंधन के रूप में थोरियम का उपयोग करने के लिए अनुकूल होगा. अद्वितीय द्रव ईंधन रेंज 400-600 डिग्री सेल्सियस में पिघला देता है कि एक नमक के मिश्रण के भाग के रूप में थोरियम और यूरेनियम (यू -233 और / या यू -235) फ्लोराइड शामिल है, और यह तरल fissioning के लिए गर्मी हस्तांतरण द्रव और मैट्रिक्स दोनों के रूप में कार्य करता है ईंधन. द्रव एक कोर क्षेत्र के माध्यम से और फिर विभिन्न विखंडन उत्पादों (जहर) और / या मूल्यवान यू -233 हटा एक रासायनिक प्रसंस्करण सर्किट के माध्यम से circulates. कुछ एमएसआर डिजाइन [ग] यू -233 की उपयोगी मात्रा में उत्पादन करने के लिए थोरियम ईंधन के लिए विशेष रूप से डिजाइन किया जाएगा - अंत में एक ऊर्जा स्रोत के रूप में थोरियम का आत्मनिर्भर उपयोग करने के लिए अग्रणी.त्वरक चालित रिएक्टर्स (एडीएस): उप महत्वपूर्ण एडीएस प्रणाली को संभावित 'सक्षम थोरियम' है कि एक अपरंपरागत अवधारणा है. एक त्वरक से उच्च ऊर्जा प्रोटॉन नेतृत्व की तरह एक भारी लक्ष्य हड़ताल जब spallation न्यूट्रॉन घ उत्पादन कर रहे हैं. इन न्यूट्रॉन एक पारंपरिक रिएक्टर में के रूप में उत्पादन गर्मी के प्रति प्रतिक्रिया करता है जो एक थोरियम ईंधन, जैसे, गु प्लूटोनियम युक्त एक क्षेत्र में निर्देशित कर रहे हैं. प्रणाली प्रोटॉन बीम के बिना एक चेन रिएक्शन बनाए रखने में असमर्थ, subcritical यानी बनी हुई है. कठिनाइयाँ उच्च ऊर्जा त्वरक की विश्वसनीयता के साथ और भी अपने उच्च शक्ति की खपत के कारण अर्थशास्त्र के साथ झूठ. (त्वरक संचालित परमाणु ऊर्जा पर भी जानकारी पृष्ठ देखें)थोरियम ईंधन पढ़ाई से तारीख करने के लिए एक महत्वपूर्ण खोज यह कम संवर्धित यूरेनियम का उपयोग करने के लिए आर्थिक रूप से व्यवहार्य नहीं है - ईंधन, जब तक थोरियम ईंधन के साथ एक विखंडनीय चालक के रूप में (लियू 20% तक की यू -235 सामग्री के साथ) जला ऊपर बहुत उच्च स्तर पर ले जाया जा सकता है - अच्छी तरह से ज़र्कोनियम cladding के साथ LWRs में प्राप्य वर्तमान में उन से परे.प्रसार महत्व के संबंध में, थोरियम आधारित बिजली रिएक्टर ईंधन एक विस्फोटक डिवाइस के अवैध निर्माण में विखंडनीय सामग्री प्रयोग करने योग्य के लिए बहुत गरीब स्रोत होगा. खर्च थोरियम ईंधन में निहित यू -233 बहुत रेडियोधर्मी बेटी nuclides निर्माण करने के लिए decays और ये एक मजबूत गामा विकिरण क्षेत्र बना जो यू -232 शामिल हैं. यह महत्वपूर्ण समस्याओं से निपटने बनाकर और बहुत detectability (अनुमार्गणीयता) और इस सामग्री की रक्षा करने की क्षमता बढ़ाने के प्रसार प्रतिरोध प्रदान.पहले थोरियम Fuelled बिजली उत्पादनकई रिएक्टर प्रकार में बिजली उत्पन्न करने के लिए थोरियम आधारित ईंधन के उपयोग के कई महत्वपूर्ण प्रदर्शनों की गई है. इन प्रारंभिक परीक्षणों से कई विखंडनीय 'ड्राइवर' घटक के रूप में उच्च संवर्धित यूरेनियम (HEU) का उपयोग करने में सक्षम थे, और आज इस पर विचार नहीं किया जाएगा.जर्मनी में 300 मेगावाट थोरियम उच्च तापमान रिएक्टर (THTR), एक HTR, 1983 और 1989 के बीच थोरियम-HEU ईंधन से संचालित है. गु HEU ईंधन कण (बाकी ग्रेफाइट मध्यस्थ और कुछ न्यूट्रॉन अवशोषक) निहित इसकी 674,000 कंकड़ के आधे से अधिक. ये लगातार इसे संचालित के रूप में रिएक्टर के माध्यम से चले गए, और औसतन हर ईंधन कंकड़ कोर के माध्यम से छह बार पारित किए गए.अमरीका में 40 मेगावाट पीच नीचे HTR 1967-1974 [2] से भाग गया कि एक प्रदर्शन थोरियम ईंधन रिएक्टर था. यह pyrolytic कार्बन के साथ लेपित मिश्रित थोरियम यूरेनियम कार्बाइड की microspheres के रूप में एक थोरियम-HEU ईंधन का इस्तेमाल किया. ये कुंडलाकार ग्रेफाइट क्षेत्रों (नहीं कंकड़) में एम्बेडेड थे. इस रिएक्टर में 74% की क्षमता कारक के साथ 1349 बराबर पूर्ण शक्ति दिन 33 से अधिक अरब kWh उत्पादन किया.कोलोराडो, संयुक्त राज्य अमेरिका, में 330 मेगावाट फोर्ट सेंट Vrain HTR के पीच नीचे रिएक्टर के लिए एक बड़े पैमाने पर वाणिज्यिक उत्तराधिकारी था और 1976-89 से भाग गया. यह भी सिलिकॉन ऑक्साइड और विखंडन उत्पादों को बनाए रखने के लिए pyrolytic कार्बन के साथ लेपित मिश्रित थोरियम यूरेनियम कार्बाइड की microspheres के रूप में थोरियम-HEU ईंधन का इस्तेमाल किया. ये हेक्सागोनल कॉलम ('प्रिज्म') में व्यवस्था की गई है कि ग्रेफाइट 'काम्पैक्ट' में एम्बेडेड थे. थोरियम का लगभग 25 टन attained, जिनमें से बहुत रिएक्टर के लिए ईंधन में इस्तेमाल किया गया था एक जला हुआ लगभग 170 की GWD / टी.संयुक्त राज्य अमेरिका [3] में शिपिंगपोर्ट में 1977 से 1982 तक संचालित एक अनूठी थोरियम ईंधन लाइट जल ब्रीडर रिएक्टर - यह स्वतंत्र रूप से चल 'बीज' क्षेत्रों होने के विशेष ईंधन असेंबलियों में विखंडनीय चालक के रूप में यूरेनियम -233 का इस्तेमाल किया. रिएक्टर कोर एक reconfigured जल्दी PWR में रखे था. यह 86% 2.1 अरब किलोवाट से अधिक उत्पादन के एक उपलब्धता कारक के साथ 60 मेगावाट (236 एमडब्ल्यूटी) में संचालित है. पोस्ट आपरेशन निरीक्षण कि प्रजनन हुआ था, साबित 1.39% अधिक विखंडनीय ईंधन कोर जीवन के अंत में मौजूद थे कि पता चला.शिपिंगपोर्ट प्रदर्शन LWBR की * कोर एक बाहरी परावर्तक क्षेत्र से घिरा हुआ बीज और कंबल मॉड्यूल की एक सरणी शामिल थे. बीज और कंबल क्षेत्रों में, ईंधन छर्रों थोरियम -232 ऑक्साइड (ThO2) और यू -233 में समृद्ध 98% से अधिक थी कि यूरेनियम ऑक्साइड (UO2) का मिश्रण होता है. UO2 के वजन से अनुपात बीज क्षेत्र में 5-6% के आसपास था, और कंबल क्षेत्र में लगभग 1.5-3%. परावर्तक क्षेत्र कोर जीवन की शुरुआत में ही थोरियम ऑक्साइड निहित. समय पर यह यू -235 parasitically एक PWR में प्रजनन की अनुमति के लिए भी कई न्यूट्रॉन कब्जा होगा विखंडन और पु 239 प्रति काफी न्यूट्रॉन रिलीज नहीं होगी माना जाता था कि क्योंकि अंडर 233 का इस्तेमाल किया गया था.विशेष जेट नियंत्रण उपायों की जरूरत है जब विशेष रूप से प्रारंभिक कोर में - भारतीय भारी पानी रिएक्टरों (PHWRs) कुछ ईंधन चैनलों में सपाट सत्ता के लिए थोरियम असर ईंधन बंडलों का इस्तेमाल किया है एक लंबे समय के लिए है.अन्य थोरियम ऊर्जा अनुसंधान और विकास - अतीत और वर्तमानएक परमाणु ईंधन के रूप में थोरियम के उपयोग में अनुसंधान यूरेनियम या यूरेनियम प्लूटोनियम ईंधन के लिए है कि तुलना में काफी कम तीव्रता के साथ यद्यपि, 40 से अधिक वर्षों के लिए किया जा रहा है. बुनियादी विकास कार्य जर्मनी, भारत, कनाडा, जापान, चीन, नीदरलैंड, बेल्जियम, नार्वे, रूस, ब्राजील, ब्रिटेन और संयुक्त राज्य अमेरिका में आयोजित किया गया है. टेस्ट irradiations अलग थोरियम आधारित ईंधन रूपों में से एक नंबर पर आयोजित किया गया है.थोरियम ईंधन को शामिल उल्लेखनीय अध्ययन और प्रयोगों में शामिल हैं:हैवी वाटर रिएक्टर्स: 'Candu' पीएचडब्ल्यूआर प्रणाली के लिए थोरियम आधारित ईंधन 47 GWD / टी के लिए जला हुआ सहित 50 से अधिक वर्षों के लिए बनाया गया है और कनाडा में परीक्षण किया गया है. ThO2-UO2 मिश्रित ThO2,, (लियू और HEU दोनों), और मिश्रित ThO2-PuO2, (रिएक्टर और दोनों हथियार ग्रेड): परीक्षण irradiations के दर्जनों सहित ईंधन पर प्रदर्शन किया गया है. CANDU रिएक्टरों में थोरियम ईंधन के उपयोग में अनुसंधान एवं विकास कनाडा और चीन के समूह द्वारा चलाया जा रहा है. चीन में, मंत्रिमंडल विशेष रूप से एक Canflex ईंधन बंडल के बीच में 8 थोरियम ऑक्साइड ईंधन पिनों का उपयोग वहाँ प्रदर्शन किया गया है जहां Qinshan तीसरे चरण पीएचडब्ल्यूआर इकाइयों के लिए, थोरियम सहित ईंधन चक्र के विकल्प की एक विस्तृत श्रृंखला में लग गया है कम यूरेनियम को समृद्ध बनाया. ईंधन सामग्री उनके गुणों की दृष्टि में अच्छा प्रदर्शन किया है.बंद थोरियम ईंधन चक्र PHWRs अपने ईंधन भरने लचीलापन के कारण एक महत्वपूर्ण भूमिका निभाते हैं, जिनमें [4] डिजाइन किया गया है: thoria आधारित HWR ईंधन में पुनर्नवीनीकरण यू -233, अवशिष्ट प्लूटोनियम और इस्तेमाल LWR ईंधन से यूरेनियम शामिल करने, और भी मामूली actinide घटकों सकते हैं कचरे में कमी रणनीति.जुलाई 2009 में एक दूसरे चरण के समझौते को संयुक्त रूप से विकसित करने और प्रदर्शित थोरियम ईंधन के उपयोग और व्यावसायिक अध्ययन और करने के लिए AECL, तीसरा Qinshan न्यूक्लियर पावर कंपनी (TQNPC), चीन उत्तर परमाणु ईंधन निगम और चीन के परमाणु ऊर्जा संस्थान के बीच हस्ताक्षर किए गए थे ऐसे Qinshan में के रूप में Candu इकाइयों में अपनी पूर्ण पैमाने पर उपयोग की तकनीकी व्यवहार्यता. इस CNNC द्वारा नियुक्त एक विशेषज्ञ पैनल द्वारा दिसंबर 2009 में समर्थन किया था. पैनल भी हल्के जल रिएक्टर ईंधन से पुनर्नवीनीकरण फिर से उपयोग यूरेनियम को Candu रिएक्टरों की क्षमता का उल्लेख किया है, और सर्वसम्मति से चीन वैकल्पिक ईंधन के उपयोग में डिजाइन की अद्वितीय क्षमता का लाभ लेने के लिए दो नए Candu इकाइयों के निर्माण पर विचार करने की सिफारिश की. विशेषज्ञ पैनल चीन की प्रमुख परमाणु शैक्षिक, सरकार, उद्योग और अनुसंधान एवं विकास संगठनों के प्रतिनिधि शामिल थे. विशेष रूप से यह बढ़ी Candu 6 रिएक्टर डिजाइन में थोरियम का उपयोग करें "तकनीकी रूप से व्यावहारिक और संभव है कि" की पुष्टि की है, और यह निकट भविष्य में चीन में तैनात किया जा सकता है कारण के रूप में डिजाइन की "बढ़ाया सुरक्षा और अच्छा अर्थशास्त्र" आह्वान किया.भारत के परमाणु डेवलपर्स थोरियम 'जलती हुई' के लिए एक साधन के रूप में विशेष रूप से एक उन्नत भारी जल रिएक्टर (एएचडब्ल्यूआर) तैयार की है - यह अपने 3 चरण परमाणु ऊर्जा के बुनियादी ढांचे की योजना (नीचे देखें) के अंतिम चरण में किया जाएगा. रिएक्टर मिश्रित ऑक्साइड के रूप में थोरियम प्लूटोनियम या थोरियम U-233 बीज ईंधन का उपयोग कर 300 मेगावाट की एक शक्ति के साथ काम करेंगे. यह भारी पानी मॉडरेट (और ठंडा प्रकाश पानी) और आत्मनिर्भर यू -233 उत्पादन करने में सक्षम है. प्रत्येक विधानसभा में ईंधन पिन के 30 गाढ़ा छल्ले में व्यवस्थित गु U-233 ऑक्साइड, हो जाएगा. बिजली के बारे में 75% थोरियम से आ जाएगा. पायलट एएचडब्ल्यूआर का निर्माण 2012 में शुरू हो सकता है.उच्च तापमान गैस कूल्ड रिएक्टर: थोरियम ईंधन से पहले ऊपर वर्णित सफल प्रदर्शन रिएक्टरों को HTRs में इस्तेमाल किया गया था. ब्रिटेन के 741 पूर्ण शक्ति दिनों के लिए 1964 1973-20 MWth ड्रैगन HTR संचालित. ड्रैगन ब्रिटेन के अलावा ऑस्ट्रिया, डेनमार्क, स्वीडन, नॉर्वे और स्विट्जरलैंड शामिल एक ओईसीडी / Euratom सहयोग परियोजना के रूप में चलाया गया था. इस रिएक्टर आपरेशन के दौरान गठित अंडर 233 के बारे में एक ही दर पर यू -235 की खपत की जगह में एक 'नस्ल और चारा' मोड में थोरियम-HEU ईंधन तत्वों का इस्तेमाल किया. ईंधन के बारे में छह साल के लिए रिएक्टर में छोड़ा जा सकता है.जर्मनी 1967 और 1988 के बीच 750 से अधिक सप्ताह के लिए Jülich पर एटम Versuchs Reaktor (AVR) संचालित है. यह मुख्य रूप से थोरियम-HEU ईंधन के साथ, 15 मेगावाट पर संचालित है कि एक छोटा सा कंकड़ बिस्तर रिएक्टर था. थोरियम से 1360 किलो 100.000 कुछ पत्थरों में भी इस्तेमाल किया गया था. 150 GWD / टी जला अप प्राप्त किया गया.कंकड़ बिस्तर रिएक्टर विकास AVR और THTR साथ जर्मन काम पर बनाता है और (HTR-10, और HTR-PM) चीन में विकास के अंतर्गत है.लाइट जल रिएक्टर्स: एक PWR में थोरियम ईंधन का उपयोग करने की व्यवहार्यता 1980 के दशक में जर्मनी और ब्राजील के बीच एक सहयोगी परियोजना के दौरान काफी विस्तार से अध्ययन किया गया था [5]. दृष्टि प्रभावी रूप से सामग्री है कि इस्तेमाल ईंधन रणनीतियों डिजाइन करने के लिए था - प्लूटोनियम और यू -233 की रीसाइक्लिंग तार्किक होने के लिए देखा था. अध्ययन अंडर 233 के लिए कि प्रशंसनीय रूपांतरण पता चला विभिन्न थोरियम ईंधन के साथ प्राप्त किया जा सकता है, और कि उपयोगी यूरेनियम बचत प्राप्त किया जा सकता है. कार्यक्रम गैर तकनीकी कारणों के लिए 1988 में समाप्त हुई. यह प्रारंभिक गु ईंधन विकिरण प्रयोगों जर्मनी में प्रदर्शन किया गया है, हालांकि ब्राजील में Angra -1 PWR में थोरियम प्लूटोनियम ईंधन का परीक्षण irradiations शामिल किया जाएगा जो इसके बाद के चरणों तक पहुँच नहीं था. इस अध्ययन से अधिकांश निष्कर्ष आज प्रासंगिक बने हुए हैं.LWRs के लिए थोरियम से प्लूटोनियम ऑक्साइड (गु MOX) ईंधन इन थोरियम से ऊर्जा के दोहन के लिए सबसे आसानी से प्राप्त विकल्प हैं कि एक दृश्य के साथ नार्वे के समर्थकों द्वारा विकसित किया जा रहा है. इस तरह के ईंधन मौजूदा रिएक्टरों में प्रयोग करने योग्य है (न्यूनतम संशोधन के साथ) और ईंधन मौजूदा प्रौद्योगिकी और लाइसेंस के अनुभव का उपयोग करते हुए मौजूदा यूरेनियम MOX संयंत्रों में बनाया जा सकता है क्योंकि यह है. एक थोरियम-MOX ईंधन विकिरण प्रयोग 2012 में Halden ईंधन परीक्षण रिएक्टर में शुरू हो जाएगा.तथाकथित Radkowsky थोरियम रिएक्टर मूल (VVERs) रूसी प्रकार LWRs के लिए बनाया गया एक विशिष्ट, विषम 'बीज व कंबल' थोरियम ईंधन अवधारणा, [6] है. संवर्धित यूरेनियम (20% यू -235) या प्लूटोनियम यह ईंधन एक अद्वितीय धातु के रूप में किया जा रहा है, के साथ एक ईंधन विधानसभा के केंद्र में एक बीज क्षेत्र में प्रयोग किया जाता है. केंद्रीय बीज हिस्से को नौ साल ई के लिए रिएक्टर में रहता है जो कंबल सामग्री से अलग करने योग्य है, लेकिन केंद्र बीज भाग (एक सामान्य VVER के रूप में) केवल तीन साल के लिए जला दिया है. मध्य भाग में बीज ईंधन छड़ों की डिज़ाइन रूसी नौसेना रिएक्टरों के अनुभव पर छोड़ता है.यूरोपीय फ्रेमवर्क कार्यक्रम LWRs में थोरियम ईंधन के उपयोग में प्रासंगिक अनुसंधान गतिविधियों का एक नंबर का समर्थन किया है. तीन अलग परीक्षण irradiations यह 38 GWD / टी burnup के बारे में हासिल की जिसके दौरान 2002-06 से अधिक Obrigheim PWR में भरी हुई एक परीक्षण पिन सहित थोरियम प्लूटोनियम ईंधन पर प्रदर्शन किया गया है.थोरियम से प्लूटोनियम ईंधन की एक छोटी राशि के 1970 के दशक में जर्मनी में 60 मेगावाट Lingen BWR में विकिरणित किया गया था. ईंधन उच्च विखंडनीय ग्रेड प्लूटोनियम (86% पु-239) और 20 GWD / टी burnup बारे हासिल ईंधन के 2.6% निहित. प्रयोग तथापि, यह ईंधन सामग्री के लिए कोड का मौलिक डेटा संग्रह और बेंच मार्किंग के लिए अनुमति दी प्रयोग वाणिज्यिक ईंधन के प्रतिनिधि नहीं था.पिघला हुआ नमक रिएक्टरों: ओक रिज नेशनल लेबोरेटरी (यूएसए) बनाया गया है और मुख्य विखंडनीय चालक के रूप में अंडर 233 का उपयोग करते हुए एक थोरियम आधारित प्रदर्शन एमएसआर बनाया. रिएक्टर 1965-69 से टकरा गई और 7.4 एमडब्ल्यूटी तक की शक्तियों पर संचालित है. लिथियम फीरोज़ा नमक 600-700 डिग्री सेल्सियस और परिवेश के दबाव में काम किया. अनुसंधान एवं विकास कार्यक्रम इस प्रणाली की व्यवहार्यता का प्रदर्शन किया और एक बड़ा पायलट एमएसआर निर्माण अगर संबोधित करने की आवश्यकता है कि कुछ अनोखी जंग और परिचालन मुद्दों पर प्रकाश डाला.थोरियम ईंधन MSRs के विकास में महत्वपूर्ण नए सिरे से रुचि है. परियोजनाओं (या हाल ही में किया गया है) चीन में चल, जापान, रूस, फ्रांस और अमरीका हैं.यह एमएसआर आगे विकास (चतुर्थ पीढ़ी के परमाणु रिएक्टरों के बारे में जानकारी पृष्ठ देखें) के लायक के रूप में चयनित छह 'चतुर्थ पीढ़ी' रिएक्टर डिजाइन की है कि उल्लेखनीय है. थोरियम ईंधन एमएसआर संस्करण कभी कभी तरल फ्लोराइड थोरियम रिएक्टर (LFTR) में जाना जाता है. नीचे उपधारा देखें.एक जलीय समरूप निलंबन रिएक्टर 1970 के मध्य में थोरियम का उपयोग करने के लिए तीन साल 1 MWth पर नीदरलैंड में संचालित है. थोरियम-HEU ईंधन यू -233 के लिए एक उच्च रूपांतरण दर में जिसके परिणामस्वरूप, विखंडन उत्पादों को दूर करने के लिए कोर बाहर निरंतर पुनर्प्रसंस्करण के साथ समाधान में वितरित किया गया.त्वरक चालित रिएक्टरों: समूहों की एक संख्या एक थोरियम ईंधन त्वरक संचालित रिएक्टर (एडीएस) काम करते हैं और दिखाई दे सकते हैं कैसे की जांच की है. शायद सबसे उल्लेखनीय ब्रिटेन के एक समूह द्वारा पेटेंट 'ADTR' डिजाइन है. इस रिएक्टर निर्णायक मोड़ के बहुत करीब चल रही है और इसलिए spallation न्यूट्रॉन स्रोत ड्राइव करने के लिए एक अपेक्षाकृत छोटे प्रोटॉन बीम की आवश्यकता है. एडीएस रिएक्टरों के लिए इससे पहले के प्रस्तावों का उत्पादन करने के लिए ऊर्जा गहन हैं जो उच्च ऊर्जा और उच्च वर्तमान प्रोटॉन बीम की आवश्यकता है, और जिसके लिए परिचालन विश्वसनीयता एक समस्या है.रिसर्च रिएक्टर 'कामिनी': भारत 1996 के बाद से कलपक्कम में एक कम शक्ति यू -233 ईंधन रिएक्टर संचालन किया गया है - इस एल्यूमिनियम प्लेट (अनुसंधान रिएक्टरों के लिए एक ठेठ ईंधन के रूप) में अंडर 233 का उपयोग करते हुए एक 30 kWth प्रायोगिक सुविधा है. कामिनी एक beryllia न्यूट्रॉन परावर्तक के साथ ठंडा पानी है. कोर में अंडर 233 के कुल द्रव्यमान 600 ग्राम के आसपास है. यह दुनिया में केवल यू -233 ईंधन रिएक्टर होने के लिए उल्लेखनीय है कि यह अपने आप में नहीं है, हालांकि सीधे थोरियम ईंधन अनुसंधान और विकास का समर्थन रिएक्टर ThO2 कामिनी के लिए यू -233 के उत्पादन, विकिरणित है जिसमें 40 एमडब्ल्यूटी फास्ट ब्रीडर टेस्ट रिएक्टर के निकट है.फास्ट ब्रीडर रिएक्टर (एफबीआर) भारत के त्रिस्तरीय परमाणु ऊर्जा कार्यक्रम में एक सहायक भूमिका (नीचे थोरियम चक्र के लिए भारत की योजनाओं पर उपधारा देखें) खेलते हैं, लेकिन खुद को थोरियम का उपयोग नहीं करते.लिक्विड फ्लोराइड थोरियम रिएक्टरएमएसआर अवधारणा का विकास एक तरल थोरियम नमक कंबल में पैदा किया गया है, जो अंडर 233 का उपयोग, लिक्विड फ्लोराइड थोरियम रिएक्टर (LFTR) है. *कोर सर्किट में * पिघला हुआ नमक लिथियम, बेरिलियम और विखंडनीय यू -233 फ्लोराइड के होते हैं. यह कुछ 700 डिग्री सेल्सियस पर चल रही है और एक मध्यस्थ और न्यूट्रॉन परावर्तक के रूप में कार्य करता है कि एक ग्रेफाइट संरचना के भीतर कम दबाव में circulates. हाल विखंडन उत्पादों को भंग करने या निलंबित नमक में और इनमें से कुछ एक आसन्न radiochemical प्रोसेसिंग यूनिट में उत्तरोत्तर हटा रहे हैं. Actinides कम आसानी से 235 से अधिक परमाणु भार के साथ ईंधन की तुलना में गठन कर रहे हैं. कंबल सर्किट पिघला हुआ ली हो फ्लोराइड नमक में थोरियम tetrafluoride का एक महत्वपूर्ण राशि शामिल है. नमक (जो रासायनिक कम प्रतिक्रियाशील थोरियम tetrafluoride को प्रभावित नहीं करता है) के माध्यम से फ्लोरीन गैस बुदबुदाती द्वारा गैस यूरेनियम हेक्साफ्लोराइड (UF6) में बदल जाती है, जो यू -233 रूपों घुलनशील यूरेनियम tetrafluoride (UF4), नवगठित. अस्थिर यूरेनियम हेक्साफ्लोराइड कब्जा कर लिया है, हाइड्रोजन गैस से घुलनशील UF4 वापस करने के लिए कम है, और अंत में विखंडनीय ईंधन के रूप में सेवा करने के लिए कोर को निर्देश दिया है.सुरक्षा बिजली कट जाता है तो ईंधन एक पकड़ बेसिन में subcritical ज्यामिति में पलायन करने की अनुमति देता है एक फ्रीज प्लग के साथ हासिल की है. ईंधन के विस्तार के कारण जेट की एक नकारात्मक तापमान गुणांक भी है.जनवरी 2011 में चीन विज्ञान अकादमी थोरियम प्रजनन पिघला हुआ नमक रिएक्टर (गु एमएसआर या TMSR) के रूप में जाना LFTR पर एक अनुसंधान एवं विकास कार्यक्रम का शुभारंभ किया, और पूर्ण प्राप्त करने की उम्मीद कर रहा है, उस पर दुनिया के सबसे बड़े राष्ट्रीय प्रयास करने का दावा प्रौद्योगिकी पर बौद्धिक संपदा अधिकारों. TMSR रिसर्च सेंटर जाहिरा तौर पर 2015 के लक्ष्य को आपरेशन के साथ एप्लाइड फिजिक्स के शंघाई संस्थान (SINAP, अकादमी के तहत) में निर्माणाधीन एक 5 मेगावाट एमएसआर प्रोटोटाइप है. अमेरिका के ऊर्जा विभाग के कार्यक्रम पर अकादमी के साथ सहयोग कर रहा है.थोरियम चक्र के लिए भारत की योजनाआसानी से सुलभ थोरियम और अपेक्षाकृत छोटे यूरेनियम का विशाल संसाधनों के साथ, भारत एक त्रिस्तरीय अवधारणा का उपयोग अपने परमाणु ऊर्जा कार्यक्रम में बड़े पैमाने पर ऊर्जा उत्पादन के एक प्रमुख लक्ष्य के लिए थोरियम का उपयोग बना दिया है:

        
    प्राकृतिक यूरेनियम, प्लस प्रकाश पानी रिएक्टरों की शह दाबित भारी पानी रिएक्टरों (PHWRs), प्लूटोनियम उत्पादन.
        
    थोरियम से यू -233 नस्ल प्लूटोनियम आधारित ईंधन का उपयोग करते हुए फास्ट ब्रीडर रिएक्टर (एफबीआर). कोर के आसपास कंबल यूरेनियम के साथ ही थोरियम, ताकि आगे प्लूटोनियम (विशेष रूप से पु-239) का उत्पादन किया जाता है और साथ ही यू -233 होगा.
        
    उन्नत भारी जल रिएक्टर (AHWRs) थोरियम से उनकी शक्ति का 75% के बारे में हो रही है, थोरियम के साथ यू -233 और इस प्लूटोनियम जला. इस्तेमाल ईंधन तो रीसाइक्लिंग के लिए विखंडनीय सामग्री को ठीक करने के लिए पुनः किया जाएगा.यह भारतीय कार्यक्रम अधिक से अधिक क्षमता देने के लिए FBR बेड़े से आगे विखंडनीय प्लूटोनियम के अलावा के साथ एक 'प्रेरित' करने के लिए थोरियम के साथ बस निरंतर किया जा करने के लिए लक्ष्य से ले जाया गया है. 2009 में, यूरेनियम पर व्यापार प्रतिबंधों में ढील देने के बावजूद, भारत थोरियम चक्र के विकास के साथ आगे बढ़ने के लिए अपने इरादे की पुष्टि की.कलपक्कम में निर्माणाधीन 500 मेगावाट प्रोटोटाइप FBR AHWRs थोरियम से यू -233 प्रजनन के लिए सक्षम बनाने के लिए प्लूटोनियम का उत्पादन करने के लिए डिज़ाइन किया गया है. भारत केंद्रित थी और निर्माण प्राथमिकता और यह आवश्यक प्लूटोनियम पैदा होगा, जिसमें उसके सोडियम कूल्ड तेजी से रिएक्टर बेड़े के चालू है. 20 साल और भारत काफी हद तक थोरियम ऊर्जा का उपयोग करने से पहले तो यह अभी भी कुछ समय होगा - यह एक और 15 ले जाएगा.एक थोरियम आधारित ईंधन चक्र का विकासथोरियम ईंधन चक्र पीढ़ी बर्बादी के निचले स्तर पर, कि बेकार में कम transuranic तत्वों, और परमाणु ईंधन की आपूर्ति के लिए एक विविधीकरण विकल्प उपलब्ध कराने सहित आकर्षक सुविधाओं की पेशकश. इसके अलावा, सबसे रिएक्टर प्रकार में थोरियम का उपयोग महत्वपूर्ण अतिरिक्त सुरक्षा हाशिए की ओर जाता है. इन खूबियों के बावजूद, थोरियम ईंधन के व्यावसायीकरण आवश्यक विकास कार्य शुरू करने के लिए एक आर्थिक मामले के निर्माण के मामले में कुछ महत्वपूर्ण बाधाओं का सामना करना पड़ता है.किसी भी थोरियम ईंधन सेवा में प्रवेश कर सकते से पहले परीक्षण, विश्लेषण और लाइसेंस और योग्यता काम का एक बड़ा सौदा की आवश्यकता है. यह महंगा है और एक स्पष्ट व्यापार का मामला है और सरकार के समर्थन के बिना समाप्त नहीं होगा - प्रचुर मात्रा में यूरेनियम उपलब्ध है.थोरियम ईंधन चक्र के विकास के लिए अन्य बाधाओं ईंधन निर्माण * की उच्च लागत और विखंडनीय प्लूटोनियम चालक सामग्री उपलब्ध कराने के पुनर्प्रसंस्करण की लागत रहे हैं.ईंधन निर्माण के * उच्च लागत आंशिक रूप से रासायनिक किरणित थोरियम ईंधन से अलग यू -233 में बनाता है कि रेडियोधर्मिता के उच्च स्तर की वजह से है. सेपरेटेड यू -233 हमेशा इस तरह के उच्च ऊर्जा गामा उत्सर्जक हैं कि थैलियम-208 के रूप में बेटी nuclides के लिए (एक 69 साल के आधे जीवन के साथ) decays जो यू -232 के निशान के साथ दूषित है. इस यू -233 संभाल करने के लिए कठिन है और पता लगाने के लिए आसान बनाने के द्वारा ईंधन चक्र के लिए प्रसार प्रतिरोध प्रदान हालांकि, यह बढ़ी हुई लागत में परिणाम है. कारण अत्यधिक रेडियोधर्मी गु-228 (दो साल का आधा जीवन के साथ एक अल्फा emitter) पेश करने के लिए थोरियम ही रीसाइक्लिंग में इसी तरह की समस्याएं हैं.फिर भी, थोरियम ईंधन चक्र लंबी अवधि में विशाल ऊर्जा सुरक्षा लाभ प्रदान करता है - तेजी से न्यूट्रॉन रिएक्टरों के लिए आवश्यकता के बिना एक आत्मनिर्भर ईंधन होने के लिए अपनी क्षमता की वजह से. इसलिए यह विश्वसनीय, लंबी अवधि के परमाणु ऊर्जा परिदृश्यों के निर्माण के लिए योगदान करने में सक्षम लगता है कि एक महत्वपूर्ण और संभावित रूप से व्यवहार्य तकनीक है.ब्रिटेन के दृश्य2010 में ब्रिटेन के राष्ट्रीय परमाणु प्रयोगशाला (NNL) मध्यम अवधि के लिए, समापन थोरियम चक्र एक कागज पर प्रकाशित:"NNL थोरियम ईंधन चक्र वर्तमान में अपने संभावित लंबी अवधि के लिए मध्यम में प्लूटोनियम प्रबंधन के लिए आवेदन और स्वदेशी थोरियम भंडार पर निर्भर करता है कि अन्य की तुलना में ब्रिटेन के संदर्भ में खेलने के लिए एक भूमिका नहीं है का मानना ​​है कि केवल एक सीमित होने की संभावना है तकनीकी रूप से अपरिपक्व और वर्तमान में नहीं उल्लेखनीय लाभ के बिना महत्वपूर्ण वित्तीय निवेश और जोखिम का प्रतिनिधित्व उपयोगिताओं. के हित के लिए कई मामलों में, थोरियम ईंधन चक्र के लाभ से अधिक कहा गया है, हालांकि आगे कुछ साल के लिए अंतरराष्ट्रीय स्तर पर भूमिका. प्रौद्योगिकी, नवीन है . "हथियार और परमाणु अप्रसारथोरियम ईंधन चक्र कभी कभी उत्कृष्ट अप्रसार साख होने के रूप में पदोन्नत किया है. यह सच है, लेकिन कुछ इतिहास और भौतिकी टिप्पण भालू.अमरीका प्लूटोनियम उत्पादन रिएक्टरों में रासायनिक और समस्थानिक पवित्रता के विभिन्न स्तरों पर 'शीत युद्ध' के दौरान थोरियम से अंडर 233 के बारे में 2 टन का उत्पादन किया. यह एक परमाणु हथियार में अंडर 233 का उपयोग करना संभव है, और 1955 में संयुक्त राज्य अमेरिका के ऑपरेशन चायदानी में, एक प्लूटोनियम U-233 समग्र पिट के साथ एक डिवाइस विस्फोट. यील्ड 22 किलोटन में, उम्मीद से कम था. 1998 में भारत हालांकि शक्ति वी. बुलाया अंडर 233 के आधार पर एक बहुत छोटा सा उपकरण विस्फोट, यू -233 का उत्पादन अनिवार्य रूप से यह भी सामग्री है जो अत्यंत कठिन बना रही है, के रूप में कुछ क्षय उत्पादों रहे हैं, एक मजबूत गामा emitter है यू -232 पैदावार संभाल करने के लिए और भी आसान पता लगाने के लिए.अधिक जानकारीनोट्सएक. गु -232 से न्यूट्रॉन अवशोषण गु -233 का उत्पादन जो प्रोटैक्टीनियम -233 (पा-233) के लिए बीटा क्षय (के बारे में 22 मिनट की एक आधा जीवन के साथ) - और आगे बीटा क्षय ने यू -233 को इस क्षय (एक आधे के साथ 27 दिनों के जीवन). नस्ल में यू -233 आगे न्यूट्रॉन अवशोषण द्वारा यू 234 में बदल जाती है की कुछ. यू-234 एक अवांछित परजीवी न्यूट्रॉन अवशोषक है. यह विखंडनीय यू -235 (यूरेनियम की स्वाभाविक रूप से होने वाली विखंडनीय आइसोटोप) और यह कुछ हद तक इस neutronic दंड के लिए क्षतिपूर्ति करने के लिए धर्मान्तरित. थोरियम U-233 ईंधन की बहु पुनरावृत्ति को शामिल ईंधन चक्र में, अंडर 234 का निर्माण सराहनीय हो सकता है. [पीछे]बी. एक यू -233 नाभिक औसतन पैदावार अधिक न्यूट्रॉन, जब एक यूरेनियम -235 या प्लूटोनियम -239 नाभिक किसी से भी यह विखंडन (विभाजन). दूसरे शब्दों में, हर थर्मल न्यूट्रॉन के लिए उत्पादित न्यूट्रॉन की एक बड़ी संख्या में हैं एक U-233 ईंधन में लीन और आसपास के ईंधन में जारी किया. इस रिएक्टर प्रणाली में बेहतर न्यूट्रॉन अर्थव्यवस्था देता है .. [पीछे]सी. थोरियम का उपयोग कर MSRs संभावना भंग थोरियम से अंडर 233 का निर्माण करने के लिए अनुकूलित है जो एक अलग 'कंबल' सर्किट होगा. न्यूट्रॉन संयम कोर (एक epithermal स्पेक्ट्रम के लिए लक्ष्य) में ग्रेफाइट की राशि के अनुरूप है. इस यूरेनियम चुनिंदा नमक के माध्यम से फ्लोरीन गैस बुदबुदाती द्वारा यूरेनियम हेक्साफ्लोराइड (UF6) के पद से हटाया जा सकता है. रूपांतरण के बाद यह विखंडनीय ईंधन के रूप में कोर करने के लिए निर्देशित किया जा सकता है. [पीछे]घ. Spallation न्युक्लियोन एक उच्च ऊर्जा कण से मारा जा रहा है एक भारी नाभिक से अलग हो रहे हैं, जहां की प्रक्रिया है. इस मामले में, एक भारी लक्ष्य के निर्देश पर एक उच्च enery प्रोटॉन बीम न्यूट्रॉन सहित spallation कणों की संख्या expels. [पीछे]ई. कंबल ईंधन 100 GWD / टी जलाने तक पहुँचने के लिए बनाया गया है. साथ में, बीज और कंबल एक सामान्य VVER-100 ईंधन विधानसभा (विस्तृत एक हेक्सागोनल सरणी 235 मिमी में 331 छड़) के रूप में एक ही ज्यामिति है. [पीछे]सन्दर्भ1. यूरेनियम 2007 से लिया डेटा: संसाधन, उत्पादन और मांग, परमाणु ऊर्जा एजेंसी (जून 2008), एनईए # 6345 (आईएसबीएन 9789264047662). 2009 के आंकड़े बड़े पैमाने पर अपरिवर्तित रहे. खनिज संसाधन, खान एवं प्रसंस्करण केन्द्र, जियोसाइंस ऑस्ट्रेलिया के ऑस्ट्रेलियाई एटलस (जनरल सूत्रों तहत नीचे देखें) में थोरियम से ऑस्ट्रेलियाई डेटा, [पीछे]2. 2. के.पी. , जनरल एटोमिक्स रिपोर्ट जीए-A14404 कोषाध्यक्ष, "पीच नीचे अंत का जीवन कार्यक्रम पर अंतिम सारांश रिपोर्ट" (1978)3. (मैं) W.J. Babyak, L.B. फ्रीमैन, एचएफ राब, "LWBR: पूरा एक सफल प्रदर्शन" परमाणु समाचार, सितम्बर 1988, pp114-116 (1988), (ख) जे.सी. क्लेटन, "शिपिंगपोर्ट दबाव जल रिएक्टर और लाइट जल ब्रीडर रिएक्टर" वेस्टिंगहाउस Bettis परमाणु बिजली प्रयोगशाला WAPD टी 3007 (अक्टूबर 1993). [पीछे]4. (I) के एस Sahin, Ann.Nuc.Energy etal, "माइनर एक्टिनाइड / फ्यूल बंडल में वर्दी पावर घनत्व के साथ थोरियम बर्नर के रूप में CANDU रिएक्टर". 35, 690-703 (2008), (ख) जे यू, कश्मीर, वैंग, आर Sollychin, etal, Prog.Nucl.Energy "एक थोरियम आधारित उन्नत परमाणु ऊर्जा प्रणाली के थोरियम ईंधन चक्र". 45, 71-84 (2004) [पीछे]5. "PWRs में थोरियम उपयोग पर अनुसंधान और विकास के जर्मन ब्राजील के कार्यक्रम", अंतिम रिपोर्ट, Kernforschungsanlage Jülich, 1988. [पीछे]6. ए Galperin, ए Radkowsky और एम. Todosow, वर्तमान प्रौद्योगिकी के दबाव पानी रिएक्टरों, 1997 में वियना में आयोजित तीन अंतरराष्ट्रीय परमाणु ऊर्जा एजेंसी की बैठकों, 1998 और 1999, आईएईए TECDOC 1319 की कार्यवाही के लिए एक प्रतियोगी थोरियम ईंधन चक्र: थोरियम ईंधन उपयोग : विकल्प और प्रवृत्तियों, आईएईए-TECDOC-1319. [पीछे]जनरल स्रोतोंविद्युत उत्पादन के लिए थोरियम आधारित ईंधन विकल्प: 1990 के दशक में विकास, अंतर्राष्ट्रीय परमाणु ऊर्जा एजेंसी-TECDOC-1155, अंतर्राष्ट्रीय परमाणु ऊर्जा एजेंसी, मई 2000थोरियम, खनिज संसाधन, खान एवं प्रसंस्करण केन्द्र (www.australianminesatlas.gov.au), जियोसाइंस ऑस्ट्रेलिया के ऑस्ट्रेलियाई एटलस में (2009)Taesin चुंग, परमाणु ऊर्जा, 1996 वार्षिक यूरेनियम उद्योग, ऊर्जा सूचना प्रशासन, DOE/EIA-0478 (96) p.ix-सत्रह (अप्रैल 1997) में थोरियम की भूमिकाएम. बेनेडिक्ट वें Pigford और HW लेवी, परमाणु केमिकल इंजीनियरिंग (2 एड.), अध्याय 6: थोरियम, p.283-317, 1981, मैकग्रॉ हिल (ISBN: 0070045313)Kazimi एम.एस. परमाणु ऊर्जा, अमेरिकी वैज्ञानिक (सितम्बर अक्टूबर 2003) के लिए 2003, थोरियम ईंधनW.J. Babyak, L.B. फ्रीमैन, एचएफ राब,: परमाणु समाचार, सितम्बर 1988, pp114-116 (1988) "LWBR एक सफल प्रदर्शन पूरा"12 वीं भारतीय परमाणु सोसायटी वार्षिक सम्मेलन 2001 सम्मेलन की कार्यवाही, खंड 2 (सीसा कागज)Radkowsky थोरियम ईंधन अवधारणा से संबंधित कई कागजात और लेख Lightbridge (पूर्व में थोरियम पावर) वेबसाइट (www.ltbridge.com) पर उपलब्ध हैंरॉबर्ट Hargraves और राल्फ मोइर, लिक्विड फ्लोराइड थोरियम रिएक्टरों, अमेरिकी वैज्ञानिक, वॉल्यूम. 98, नहीं, 4, पी. 304 (जुलाई 2010 से अगस्त)संबंधित जानकारी पृष्ठों
  • Nuclear Basics
  • Information Library
  • The WNA
  • Members Login

Thorium

(Updated August 2012)
  • Thorium is more abundant in nature than uranium.
  • It is fertile rather than fissile, and can be used in conjunction with fissile material as nuclear fuel.
  • Thorium fuels can breed fissile uranium-233.
The use of thorium as a new primary energy source has been a tantalizing prospect for many years. Extracting its latent energy value in a cost-effective manner remains a challenge, and will require considerable R&D investment.

Nature and sources of thorium

Thorium is a naturally-occurring, slightly radioactive metal discovered in 1828 by the Swedish chemist Jons Jakob Berzelius, who named it after Thor, the Norse god of thunder. It is found in small amounts in most rocks and soils, where it is about three times more abundant than uranium. Soil commonly contains an average of around 6 parts per million (ppm) of thorium.
Thorium exists in nature in a single isotopic form - Th-232 - which decays very slowly (its half-life is about three times the age of the Earth). The decay chains of natural thorium and uranium give rise to minute traces of Th-228, Th-230 and Th-234, but the presence of these in mass terms is negligible.
When pure, thorium is a silvery white metal that retains its lustre for several months. However, when it is contaminated with the oxide, thorium slowly tarnishes in air, becoming grey and eventually black. Thorium oxide (ThO2), also called thoria, has one of the highest melting points of all oxides (3300°C). When heated in air, thorium metal turnings ignite and burn brilliantly with a white light. Because of these properties, thorium has found applications in light bulb elements, lantern mantles, arc-light lamps, welding electrodes and heat-resistant ceramics. Glass containing thorium oxide has a high refractive index and dispersion and is used in high quality lenses for cameras and scientific instruments.
The most common source of thorium is the rare earth phosphate mineral, monazite, which contains up to about 12% thorium phosphate, but 6-7% on average. Monazite is found in igneous and other rocks but the richest concentrations are in placer deposits, concentrated by wave and current action with other heavy minerals. World monazite resources are estimated to be about 12 million tonnes, two-thirds of which are in heavy mineral sands deposits on the south and east coasts of India. There are substantial deposits in several other countries (see Table below). Thorium recovery from monazite usually involves leaching with sodium hydroxide at 140°C followed by a complex process to precipitate pure ThO2.
Thorite (ThSiO4) is another common mineral. A large vein deposit of thorium and rare earth metals is in Idaho.
The 2007 IAEA-NEA publication Uranium 2007: Resources, Production and Demand (often referred to as the 'Red Book') gives a figure of 4.4 million tonnes of total known and estimated resources, but this excludes data from much of the world. Data for reasonably assured and inferred resources recoverable at a cost of $80/kg Th or less are given in the table below. Some of the figures are based on assumptions and surrogate data for mineral sands, not direct geological data in the same way as most mineral resources.
Estimated world thorium resources 1  
There is no international or standard classification for thorium resources and identified Th resources do not have the same meaning in terms of classification as identified U resources. Thorium is not a primary exploration target and resources are estimated in relation to uranium and rare earths resources.

Country Tonnes % of total
India 846,000 16
Turkey 744,000 14
Brazil 606,000 11
Australia 521,000 10
USA 434,000 8
Egypt 380,000 7
Norway 320,000 6
Venezuela 300,000 6
Canada 172,000 3
Russia 155,000 3
South Africa 148,000 3
China 100,000 2
Greenland 86,000 2
Finland 60,000 1
Sweden 50,000 1
Kazakhstan 50,000 1
Other countries 413,000 8
World total 5,385,000   
 OECD NEA & IAEA, Uranium 2011: Resources, Production and Demand ("Red Book"), using the lower figures of any range and omitting ‘unknown’ CIS estimate.

Thorium as a nuclear fuel

Thorium (Th-232) is not itself fissile and so is not directly usable in a thermal neutron reactor – in this regard it is very similar to uranium-238. However, it is ‘fertile’ and upon absorbing a neutron will transmute to uranium-233 (U-233)a, which is an excellent fissile fuel material b. Thorium fuel concepts therefore require that Th-232 is first irradiated in a reactor to provide the necessary neutron dosing. The U-233 that is produced can either be chemically separated from the parent thorium fuel and recycled into new fuel, or the U-233 may be usable ‘in-situ’ in the same fuel form.
Thorium fuels therefore need a fissile material as a ‘driver’ so that a chain reaction (and thus supply of surplus neutrons) can be maintained. The only fissile driver options are U-233, U-235 or Pu-239 (none of which is easy to supply).

It is possible – but quite difficult – to design thorium fuels that produce more U-233 in thermal reactors than the fissile material they consume (this is referred to as having a fissile conversion ratio of more than 1.0 and is also called breeding). Thermal breeding with thorium is only really possible using U-233 as the fissile driver, and to achieve this the neutron economy in the reactor has to be very good (ie, low neutron loss through escape or parasitic absorption).  The possibility to breed fissile material in slow neutron systems is a unique feature for thorium-based fuels and is not possible with uranium fuels.

Another distinct option for using thorium is as a ‘fertile matrix’ for fuels containing plutonium (and even other transuranic elements like americium). No new plutonium is produced from the thorium component, unlike for uranium fuels, and so the level of net consumption of this metal is rather high.
In fresh thorium fuel, all of the fissions (thus power and neutrons) derive from the driver component. As the fuel operates the U-233 content gradually increases and it contributes more and more to the power output of the fuel. The ultimate energy output from U-233 (and hence indirectly thorium) depends on numerous fuel design parameters, including: fuel burn-up attained, fuel arrangement, neutron energy spectrum and neutron flux (affecting the intermediate product protactinium-233, which is a neutron absorber). The fission of a U-233 nucleus releases about the same amount of energy (200 MeV) as that of U-235.
An important principle in the design of thorium fuel is that of heterogeneous fuel arrangements in which a high fissile (and therefore higher power) fuel zone called the seed region is physically separated from the fertile (low or zero power) thorium part of the fuel – called the blanket. Such an arrangement is far better for supplying surplus neutrons to thorium nuclei so they can convert to fissile U-233, in fact all thermal breeding fuel designs are heterogeneous. This principle applies to all the thorium-capable reactor systems.

Reactors able to use Thorium

There are seven types of reactor into which thorium can be introduced as a nuclear fuel. The first five of these have all entered into operational service at some point. The last two are still conceptual:
Heavy Water Reactors (PHWRs): These are very well suited for thorium fuels due to their combination of: (i) excellent neutron economy (their low parasitic neutron absorption means more neutrons can be absorbed by thorium to produce useful U-233), (ii) slightly faster average neutron energy which favours conversion to U-233, (iii) flexible on-line refueling capability. Furthermore, heavy water reactors (especially Candu) are well established and widely-deployed commercial technology for which there is extensive licensing experience.
Thorium fuel has been tested over the past 50 years at the NRX and NRU reactors at AECL's Chalk River Laboratories, see R&D section below. CANDU reactors have very high flexibility to switch between uranium and thorium based fuels without extensive modification.
There is potential application to Enhanced Candu 6 and ACR-1000 reactors fueled with 5% plutonium (reactor grade) plus thorium. In the closed fuel cycle, the driver fuel required for starting off is progressively replaced with recycled U-233, so that on reaching equilibrium 80% of the energy comes from thorium. Fissile drive fuel could be LEU, plutonium, or recycled uranium from LWR. Fleets of PHWRs with near-self-sufficient equilibrium thorium fuel cycles could be supported by a few fast breeder reactors to provide plutonium.
High-Temperature Gas-Cooled Reactors (HTRs): These are well suited for thorium-based fuels in the form of robust ‘TRISO’ coated particles of thorium mixed with plutonium or enriched uranium, coated with pyrolytic carbon and silicon carbide layers which retain fission gases. The fuel particles are embedded in a graphite matrix that is very stable at high temperatures. Such fuels can be irradiated for very long periods and thus deeply burn to exploit their original fissile charge. Thorium fuels can be designed for both ‘pebble bed’ and ‘prismatic’ HTR fuel varieties.
Boiling (Light) Water Reactors (BWRs): BWR fuel assemblies allow for structure & composition options, such as extra moderation and/or half-length fuel rods. This design flexibility means that well-optimized thorium fuels can be created for BWRs, for example, thorium-plutonium fuels that are tailored for ‘burning’ plutonium. BWRs are a well-understood and licensed reactor design.
Pressurised (Light) Water Reactors (PWRs): Viable thorium fuels can be designed for a PWR, though with less flexibility than for BWRs. Fuel needs to be in heterogeneous arrangements in order to achieve satisfactory fuel burn-up. It is not possible to design thorium-based PWR fuels that convert significant amounts of U-233. Even though PWRs are not the perfect reactor in which to use thorium, they are the industry workhorse and there is a lot of PWR licensing experience. They are a viable early-entry thorium platform.
Fast Neutron Reactors (FNRs): Thorium can serve as a fuel component for reactors operating with a fast neutron spectrum – in which a wider range of heavy nuclides are fissionable and may potentially drive a thorium fuel. There is, however, no relative advantage in using thorium instead of depleted uranium (DU) as a fertile fuel matrix in these reactor systems due to a higher fast-fission rate for U-238 and the fission contribution from residual U-235 in this material. Also, there is a huge amount of surplus DU available for use when more FNRs are commercially available, so thorium has little or no competitive edge in these systems.
Molten Salt Reactors (MSRs): These reactors are still at the design stage but will be very well suited for using thorium as a fuel. The unique fluid fuel incorporates thorium and uranium (U-233 and/or U-235) fluorides as part of a salt mixture that melts in the range 400-600ºC, and this liquid serves as both heat transfer fluid and the matrix for the fissioning fuel. The fluid circulates through a core region and then through a chemical processing circuit that removes various fission products (poisons) and/or the valuable U-233. Certain MSR designs [c] will be designed specifically for thorium fuels to produce useful amounts of U-233 – eventually leading to the self-sustaining use of thorium as an energy source.
Accelerator Driven Reactors (ADS): The sub-critical ADS system is an unconventional concept that is potentially ‘thorium capable’. Spallation neutrons are produced d when high-energy protons from an accelerator strike a heavy target like lead. These neutrons are directed at a region containing a thorium fuel, eg, Th-plutonium which reacts producing heat as in a conventional reactor. The system remains subcritical ie, unable to sustain a chain reaction without the proton beam. Difficulties lie with the reliability of high-energy accelerators and also with economics due to their high power consumption. (See also information page on Accelerator-Driven Nuclear Energy)
A key finding from thorium fuel studies to date is that it is not economically viable to use low-enriched uranium (LEU - with a U-235 content of up to 20%) as a fissile driver with thorium fuels, unless the fuel burn-up can be taken to very high levels – well beyond those currently attainable in LWRs with zirconium cladding.

With regard to proliferation significance, thorium-based power reactor fuels would be very poor source for fissile material usable in the illicit manufacture of an explosive device. U-233 contained in spent thorium fuel contains U-232 which decays to produce very radioactive daughter nuclides and these create a strong gamma radiation field. This confers proliferation resistance by creating significant handling problems and by greatly boosting the detectability (traceability) and ability to safeguard this material.

Prior Thorium Fuelled Electricity Generation

There have been several significant demonstrations of the use of thorium-based fuels to generate electricity in several reactor types. Many of these early trials were able to use high-enriched uranium (HEU) as the fissile ‘driver’ component, and this would not be considered today.
The 300 MWe Thorium High Temperature Reactor (THTR) in Germany, a HTR, operated with thorium-HEU fuel between 1983 and 1989. Over half of its 674,000 pebbles contained Th-HEU fuel particles (the rest graphite moderator and some neutron absorbers). These were continuously moved through the reactor as it operated, and on average each fuel pebble passed six times through the core.
The 40 MWe Peach Bottom HTR in the USA was a demonstration thorium-fuelled reactor that ran from 1967-74 [2]. It used a thorium-HEU fuel in the form of microspheres of mixed thorium-uranium carbide coated with pyrolytic carbon. These were embedded in annular graphite segments (not pebbles). This reactor produced 33 billion kWh over 1349 equivalent full-power days with a capacity factor of 74%.
The 330 MWe Fort St Vrain HTR in Colorado, USA, was a larger-scale commercial successor to the Peach Bottom reactor and ran from 1976-89. It also used thorium-HEU fuel in the form of microspheres of mixed thorium-uranium carbide coated with silicon oxide and pyrolytic carbon to retain fission products. These were embedded in graphite ‘compacts’ that were arranged in hexagonal columns ('prisms'). Almost 25 tonnes of thorium was used in fuel for the reactor, much of which attained a burn-up of about 170 GWd/t.
A unique thorium-fuelled Light Water Breeder Reactor operated from 1977 to 1982 at Shippingport in the USA [3] – it used uranium-233 as the fissile driver in special fuel assemblies having independently movable ‘seed’ regions. The reactor core was housed in a reconfigured early PWR. It operated at 60 MWe (236 MWt) with an availability factor of 86% producing over 2.1 billion kWh. Post-operation inspections revealed that 1.39% more fissile fuel was present at the end of core life, proving that breeding had occurred.
* The core of the Shippingport demonstration LWBR consisted of an array of seed and blanket modules surrounded by an outer reflector region. In the seed and blanket regions, the fuel pellets contained a mixture of thorium-232 oxide (ThO2) and uranium oxide (UO2) that was over 98% enriched in U-233. The proportion by weight of UO2 was around 5-6% in the seed region, and about 1.5-3% in the blanket region. The reflector region contained only thorium oxide at the beginning of the core life. U-233 was used because at the time it was believed that U-235 would not release enough neutrons per fission and Pu-239 would parasitically capture too many neutrons to allow breeding in a PWR.
Indian heavy water reactors (PHWRs) have for a long time used thorium-bearing fuel bundles for power flattening in some fuel channels – especially in initial cores when special reactivity control measures are needed.

Other Thorium Energy R&D – Past & Present

Research into the use of thorium as a nuclear fuel has been taking place for over 40 years, though with much less intensity than that for uranium or uranium-plutonium fuels. Basic development work has been conducted in Germany, India, Canada, Japan, China, Netherlands, Belgium, Norway, Russia, Brazil, the UK & the USA. Test irradiations have been conducted on a number of different thorium-based fuel forms.
Noteworthy studies and experiments involving thorium fuel include:
Heavy Water Reactors: Thorium-based fuels for the ‘Candu’ PHWR system have been designed and tested in Canada for more than 50 years, including burn-up to 47 GWd/t. Dozens of test irradiations have been performed on fuels including: ThO2, mixed ThO2-UO2, (both LEU and HEU), and mixed ThO2-PuO2, (both reactor- and weapons-grade). R&D into thorium fuel use in CANDU reactors continues to be pursued by Canadian and Chinese groups. In China, INET has been looking at a wide range of fuel cycle options including thorium, especially for the Qinshan Phase III PHWR units, where there has been demonstrated use of 8 thorium oxide fuel pins in the middle of a Canflex fuel bundle with low-enriched uranium. The fuels have performed well in terms of their material properties.

Closed thorium fuel cycles have been designed [4] in which PHWRs play a key role due to their fuelling flexibility: thoria-based HWR fuels can incorporate recycled U-233, residual plutonium and uranium from used LWR fuel, and also minor actinide components in waste-reduction strategies.
In July 2009 a second phase agreement was signed among AECL, the Third Qinshan Nuclear Power Company (TQNPC), China North Nuclear Fuel Corporation and the Nuclear Power Institute of China to jointly develop and demonstrate the use of thorium fuel and to study the commercial and technical feasibility of its full-scale use in Candu units such as at Qinshan. This was supported in December 2009 by an expert panel appointed by CNNC. The panel also noted the ability of Candu reactors to re-use uranium recycled from light water reactor fuel, and unanimously recommended that China consider building two new Candu units to take advantage of the design's unique capabilities in utilizing alternative fuels. The expert panel comprised representatives from China’s leading nuclear academic, government, industry and R&D organizations. In particular it confirmed that thorium use in the Enhanced Candu 6 reactor design is “technically practical and feasible”, and cited the design’s “enhanced safety and good economics” as reasons it could be deployed in China in the near term. 

India’s nuclear developers have designed an Advanced Heavy Water Reactor (AHWR) specifically as a means for ‘burning’ thorium – this will be the final phase of their 3-phase nuclear energy infrastructure plan (see below). The reactor will operate with a power of 300 MWe using thorium-plutonium or thorium-U-233 seed fuel in mixed oxide form. It is heavy water moderated (& light water cooled) and is capable of self-sustaining U-233 production. In each assembly 30 of the fuel pins will be Th-U-233 oxide, arranged in concentric rings. About 75% of the power will come from the thorium. Construction of the pilot AHWR may start in 2012.

High-Temperature Gas-Cooled Reactors: Thorium fuel was used in HTRs prior to the successful demonstration reactors described above. The UK operated the 20 MWth Dragon HTR from 1964 to 1973 for 741 full power days. Dragon was run as an OECD/Euratom cooperation project, involving Austria, Denmark, Sweden, Norway and Switzerland in addition to the UK. This reactor used thorium-HEU fuel elements in a 'breed and feed' mode in which the U-233 formed during operation replaced the consumption of U-235 at about the same rate. The fuel could be left in the reactor for about six years.

Germany operated the Atom Versuchs Reaktor (AVR) at Jülich for over 750 weeks between 1967 and 1988. This was a small pebble bed reactor that operated at 15 MWe, mainly with thorium-HEU fuel. About 1360 kg of thorium was used in some 100,000 pebbles. Burn-ups of 150 GWd/t were achieved.

Pebble bed reactor development builds on German work with the AVR and THTR and is under development in China (HTR-10, and HTR-PM).

Light Water Reactors: The feasibility of using thorium fuels in a PWR was studied in considerable detail during a collaborative project between Germany and Brazil in the 1980s [5]. The vision was to design fuel strategies that used materials effectively – recycling of plutonium and U-233 was seen to be logical. The study showed that appreciable conversion to U-233 could be obtained with various thorium fuels, and that useful uranium savings could be achieved. The program terminated in 1988 for non-technical reasons. It did not reach its later stages which would have involved trial irradiations of thorium-plutonium fuels in the Angra-1 PWR in Brazil, although preliminary Th-fuel irradiation experiments were performed in Germany. Most findings from this study remain relevant today.

Thorium-plutonium oxide (Th-MOX) fuels for LWRs are being developed by Norwegian proponents with a view that these are the most readily achievable option for tapping energy from thorium. This is because such fuel is usable in existing reactors (with minimal modification) and the fuel can be made in existing uranium-MOX plants, using existing technology and licensing experience. A thorium-MOX fuel irradiation experiment will get underway in the Halden fuel testing reactor in 2012.

The so-called Radkowsky Thorium Reactor is a specific, heterogeneous ‘seed & blanket’ thorium fuel concept, originally designed for Russian-type LWRs (VVERs) [6]. Enriched uranium (20% U-235) or plutonium is used in a seed region at the centre of a fuel assembly, with this fuel being in a unique metallic form. The central seed portion is demountable from the blanket material which remains in the reactor for nine years e, but the centre seed portion is burned for only three years (as in a normal VVER). Design of the seed fuel rods in the centre portion draws on experience of Russian naval reactors.

The European Framework Program has supported a number of relevant research activities into thorium fuel use in LWRs. Three distinct trial irradiations have been performed on thorium-plutonium fuels, including a test pin loaded in the Obrigheim PWR over 2002-06 during which it achieved about 38 GWd/t burnup.

A small amount of thorium-plutonium fuel was irradiated in the 60 MWe Lingen BWR in Germany in the early 1970s. The fuel contained 2.6 % of high fissile-grade plutonium (86% Pu-239) and the fuel achieved about 20 GWd/t burnup. The experiment was not representative of commercial fuel, however the experiment allowed for fundamental data collection and benchmarking of codes for this fuel material.

Molten Salt Reactors: The Oak Ridge National Laboratory (USA) designed and built a thorium-based demonstration MSR using U-233 as the main fissile driver. The reactor ran over 1965-69 and operated at powers up to 7.4 MWt. The lithium-beryllium salt worked at 600-700ºC and ambient pressure. The R&D program demonstrated the feasibility of this system and highlighted some unique corrosion and operational issues that need to be addressed if constructing a larger pilot MSR.

There is significant renewed interest in developing thorium-fuelled MSRs. Projects are (or have recently been) underway in China, Japan, Russia, France and the USA.

It is notable that the MSR is one of the six ‘Generation IV’ reactor designs selected as worthy of further development (see information page on Generation IV Nuclear Reactors). The thorium-fuelled MSR variant is sometimes referred to at the Liquid Fluoride Thorium Reactor (LFTR). See subsection below.

An aqueous homogenous suspension reactor operated in the Netherlands at 1 MWth for three years using thorium in the mid-1970s. The thorium-HEU fuel was circulated in solution with continuous reprocessing outside the core to remove fission products, resulting in a high conversion rate to U-233.

Accelerator-Driven Reactors: A number of groups have investigated how a thorium-fuelled accelerator-driven reactor (ADS) may work and appear. Perhaps most notable is the ‘ADTR’ design patented by a UK group. This reactor operates very close to criticality and therefore requires a relatively small proton beam to drive the spallation neutron source. Earlier proposals for ADS reactors required high-energy and high-current proton beams which are energy-intensive to produce, and for which operational reliability is a problem.

Research Reactor ‘Kamini’: India has been operating a low-power U-233 fuelled reactor at Kalpakkam since 1996 – this is a 30 kWth experimental facility using U-233 in aluminium plates (a typical fuel-form for research reactors). Kamini is water cooled with a beryllia neutron reflector. The total mass of U-233 in the core is around 600 grams. It is noteworthy for being the only U-233 fuelled reactor in the world, though it does not in itself directly support thorium fuel R&D. The reactor is adjacent to the 40 MWt Fast Breeder Test Reactor in which ThO2 is irradiated, producing the U-233 for Kamini.
Fast breeder reactors (FBRs) play an ancillary role in India's three-stage nuclear power program (see subsection on India's plans for thorium cycle below) but do not themselves use thorium.
Liquid Fluoride Thorium Reactor
A development of the MSR concept is the Liquid Fluoride Thorium Reactor (LFTR), utilizing U-233 which has been bred in a liquid thorium salt blanket.*
* The molten salt in the core circuit consists of lithium, beryllium and fissile U-233 fluorides. It operates at some 700°C and circulates at low pressure within a graphite structure that serves as a moderator and neutron reflector. Most fission products dissolve or suspend in the salt and some of these are removed progressively in an adjacent radiochemical processing unit. Actinides are less-readily formed than in fuel with atomic mass greater than 235. The blanket circuit contains a significant amount of thorium tetrafluoride in the molten Li-Be fluoride salt. Newly-formed U-233 forms soluble uranium tetrafluoride (UF4), which is converted to gaseous uranium hexafluoride (UF6) by bubbling fluorine gas through the salt (which does not chemically affect the less-reactive thorium tetrafluoride). The volatile uranium hexafluoride is captured, reduced back to soluble UF4 by hydrogen gas, and finally is directed to the core to serve as fissile fuel.

Safety is achieved with a freeze plug which if power is cut allows the fuel to drain into subcritical geometry in a catch basin. There is also a negative temperature coefficient of reactivity due to expansion of the fuel.
The China Academy of Sciences in January 2011 launched an R&D program on LFTR, known there as the thorium-breeding molten-salt reactor (Th-MSR or TMSR), and claimed to have the world's largest national effort on it, hoping to obtain full intellectual property rights on the technology.  The TMSR Research Centre apparently has a 5 MWe MSR prototype under construction at Shanghai Institute of Applied Physics (SINAP, under the Academy) with 2015 target operation. The US Department of Energy is collaborating with the Academy on the program.
India's plans for thorium cycle
With huge resources of easily-accessible thorium and relatively little uranium, India has made utilization of thorium for large-scale energy production a major goal in its nuclear power programme, utilising a three-stage concept:
  • Pressurised heavy water reactors (PHWRs) fuelled by natural uranium, plus light water reactors, producing plutonium.
  • Fast breeder reactors (FBRs) using plutonium-based fuel to breed U-233 from thorium. The blanket around the core will have uranium as well as thorium, so that further plutonium (particularly Pu-239) is produced as well as the U-233.
  • Advanced heavy water reactors (AHWRs) burn the U-233 and this plutonium with thorium, getting about 75% of their power from the thorium. The used fuel will then be reprocessed to recover fissile materials for recycling.
This Indian programme has moved from aiming to be sustained simply with thorium to one 'driven' with the addition of further fissile  plutonium from the FBR fleet, to give greater efficiency. In 2009, despite the relaxation of trade restrictions on uranium, India reaffirmed its intention to proceed with developing the thorium cycle.
A 500 MWe prototype FBR under construction in Kalpakkam is designed to produce plutonium to enable AHWRs to breed U-233 from thorium. India is focusing and prioritizing the construction and commissioning of its sodium-cooled fast reactor fleet in which it will breed the required plutonium. This will take another 15 – 20 years and so it will still be some time before India is using thorium energy to a significant extent.

Developing a thorium-based fuel cycle

Thorium fuel cycles offer attractive features, including lower levels of waste generation, less transuranic elements in that waste, and providing a diversification option for nuclear fuel supply. Also, the use of thorium in most reactor types leads to significant extra safety margins. Despite these merits, the commercialization of thorium fuels faces some significant hurdles in terms of building an economic case to undertake the necessary development work.

A great deal of testing, analysis and licensing and qualification work is required before any thorium fuel can enter into service. This is expensive and will not eventuate without a clear business case and government support - abundant uranium is available.

Other impediments to the development of thorium fuel cycle are the higher cost of fuel fabrication* and the cost of reprocessing to provide the fissile plutonium driver material.

* The high cost of fuel fabrication is due partly to the high level of radioactivity that builds up in U-233 chemically separated from the irradiated thorium fuel. Separated U-233 is always contaminated with traces of U-232 which decays (with a 69-year half-life) to daughter nuclides such as thallium-208 that are high-energy gamma emitters. Although this confers proliferation resistance to the fuel cycle by making U-233 hard to handle and easy to detect, it results in increased costs. There are similar problems in recycling thorium itself due to highly radioactive Th-228 (an alpha emitter with two-year half life) present.

Nevertheless, the thorium fuel cycle offers enormous energy security benefits in the long-term – due to its potential for being a self-sustaining fuel without the need for fast neutron reactors. It is therefore an important and potentially viable technology that seems able to contribute to building credible, long-term nuclear energy scenarios.

UK view

In 2010 the UK’s National Nuclear Laboratory (NNL) published a paper on the thorium cycle, concluding for the short to medium term:
"NNL believes that the thorium fuel cycle does not currently have a role to play in the UK context, other than its potential application for plutonium management in the medium to long term and depending on the indigenous thorium reserves, is likely to have only a limited role internationally for some years ahead. The technology is innovative, although technically immature and currently not of interest to the utilities, representing significant financial investment and risk without notable benefits. In many cases, the benefits of the thorium fuel cycle have been over-stated."

Weapons and non-proliferation

The thorium fuel cycle is sometimes promoted as having excellent non-proliferation credentials. This is true, but some history and physics bears noting.

The USA produced about 2 tonnes of U-233 from thorium during the ‘Cold War’, at various levels of chemical and isotopic purity, in plutonium production reactors. It is possible to use U-233 in a nuclear weapon, and in 1955 the USA detonated a device with a plutonium-U-233 composite pit, in Operation Teapot. Yield was less than anticipated, at 22 kilotons. In 1998 India detonated a very small device based on U-233 called Shakti V. However, the production of U-233 inevitably also yields U-232 which is a strong gamma-emitter, as are some decay products, making the material extremely difficult to handle and also easy to detect.

Further Information
Notes
a. Neutron absorption by Th-232 produces Th-233 which beta-decays (with a half-life of about 22 minutes) to protactinium-233 (Pa-233) – and this decays to U-233 by further beta decay (with a half-life of 27 days). Some of the bred-in U-233 is converted to U-234 by further neutron absorption. U-234 is an unwanted parasitic neutron absorber. It converts to fissile U-235 (the naturally occuring fissile isotope of uranium) and this somewhat compensates for this neutronic penalty. In fuel cycles involving the multi-recycle of thorium-U-233 fuels, the build up of U-234 can be appreciable. [Back]
b. A U-233 nucleus yields more neutrons, on average, when it fissions (splits) than either a uranium-235 or plutonium-239 nucleus. In other words, for every thermal neutron absorbed in a U-233 fuel there are a greater number of neutrons produced and released into the surrounding fuel. This gives better neutron economy in the reactor system.. [Back]
c. MSRs using thorium will likely have a distinct ‘blanket’ circuit which is optimised for producing U-233 from dissolved thorium. Neutron moderation is tailored by the amount of graphite in the core (aiming for an epithermal spectrum). This uranium can be selectively removed as uranium hexafluoride (UF6) by bubbling fluorine gas through the salt. After conversion it can be directed to the core as fissile fuel. [Back]
d. Spallation is the process where nucleons are ejected from a heavy nucleus being hit by a high energy particle. In this case, a high-enery proton beam directed at a heavy target expels a number of spallation particles, including neutrons. [Back]
e. Blanket fuel is designed to reach 100 GWd/t burn-up. Together, the seed and blanket have the same geometry as a normal VVER-100 fuel assembly (331 rods in a hexagonal array 235 mm wide). [Back]
References
1. Data taken from Uranium 2007: Resources, Production and Demand, Nuclear Energy Agency (June 2008), NEA#6345 (ISBN 9789264047662). The 2009 figures are largely unchanged. Australian data from Thorium, in Australian Atlas of Minerals Resources, Mines & Processing Centres, Geoscience Australia (see below under General sources) [Back]
2. 2. K.P. Steward, “Final Summary Report on the Peach Bottom End-of-Life Program”, General Atomics Report GA-A14404, (1978)

3. (i) W.J. Babyak, L.B. Freeman, H.F. Raab, “LWBR: A successful demonstration completed” Nuclear News, Sept 1988, pp114-116 (1988), (ii) J.C. Clayton, “The Shippingport Pressurized Water Reactor and Light Water Breeder Reactor” Westinghouse Bettis Atomic Power Laboratory WAPD-T-3007 (October 1993). [Back]

4. (i) S. Şahin, etal, “CANDU Reactor as Minor Actinide / Thorium Burner with Uniform Power Density in the Fuel Bundle” Ann.Nuc.Energy. 35, 690-703 (2008), (ii) J. Yu, K, Wang, R. Sollychin, etal, “Thorium Fuel Cycle of a Thorium-Based Advanced Nuclear Energy System” Prog.Nucl.Energy. 45, 71-84 (2004) [Back]

5. “German Brazilian Program of Research and Development on Thorium Utilization in PWRs”, Final Report, Kernforschungsanlage Jülich, 1988. [Back]
6. A. Galperin, A. Radkowsky and M. Todosow, A Competitive Thorium Fuel Cycle for Pressurized Water Reactors of Current Technology, Proceedings of three International Atomic Energy Agency meetings held in Vienna in 1997, 1998 and 1999, IAEA TECDOC 1319: Thorium fuel utilization: Options and trends, IAEA-TECDOC-1319. [Back]

General sources

Thorium based fuel options for the generation of electricity: Developments in the 1990s, IAEA-TECDOC-1155, International Atomic Energy Agency, May 2000
Thorium, in Australian Atlas of Minerals Resources, Mines & Processing Centres (www.australianminesatlas.gov.au), Geoscience Australia (2009)
Taesin Chung, The role of thorium in nuclear energy, Uranium Industry Annual 1996, Energy Information Administration, DOE/EIA-0478(96) p.ix-xvii (April 1997)
M. Benedict, T H Pigford and H W Levi, Nuclear Chemical Engineering (2nd Ed.), Chapter 6: Thorium, , p.283-317, 1981, McGraw-Hill(ISBN: 0070045313)
Kazimi M.S. 2003, Thorium Fuel for Nuclear Energy, American Scientist (Sept-Oct 2003)
W.J. Babyak, L.B. Freeman, H.F. Raab, “LWBR: A successful demonstration completed” Nuclear News, Sept 1988, pp114-116 (1988)
12th Indian Nuclear Society Annual Conference 2001 conference proceedings, vol 2 (lead paper)
Several papers and articles related to the Radkowsky thorium fuel concept are available on the Lightbridge (formerly Thorium Power) website (www.ltbridge.com)
Robert Hargraves and Ralph Moir, Liquid Fluoride Thorium Reactors, American Scientist, Vol. 98, No. 4, P. 304 (July-August 2010)
Related information pages
Accelerator-Driven Nuclear Energy
Generation IV Nuclear Reactors
Nuclear Power in India



कोई टिप्पणी नहीं:

 रानी फाॅल / रानी जलप्रपात यह झारखण्ड राज्य के प्रमुख मनमोहन जलप्रपात में से एक है यहाँ पर आप अपनी फैमली के साथ आ सकते है आपको यहां पर हर प्...